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SUMMARY 

Drag and longitudinal t r i m  cha rac t e r i s t i c s   a t  low l i f t  of a low- 
t a i l   v e r s i o n  of t he  North American YF-100A airplane as obtained  from the 
f l i g h t   t e s t  of a 0.11-scale  rocket model a t  Mach numbers from 0.75 t o  
1.78 are  presented  herein. Also included are some longi tudinal   s tabi l -  
i t y   d a t a  and some qualitative  damping-in-pitch  data. 

The subsonic  external  drag level was  0.012. The drag  rise,  based 
on dCD/dM = 0.10, began a t  M = 0.93. The drag  coefficient peaked a t  
a value of 0.039 at  M 1.10 and decreased t o  a value of 0.034 at  
M = 1.71. The low-lift   longitudinal trim change was mild and consisted 
of a nosing-up  tendency between subsonic  speeds and M = 1.30. It should 
be  noted tha t   t he  model had i ts  center of gravity  approximately 10 per- 
cent mean aerodynamic chord  ahead of the  ful l -scale   a i rplane  center  of 
gravity.  Damping in   p i t ch  appeared t o  decrease a t  t he  lower  supersonic 
speeds.  There was no indication of t a i l  buffet  or f lu t t e r  during any 
portion of the  tes t  reported  herein. 

INTRODUCTION 

An investigation a t  low l i f t  of the  drag and longitudinal trim 
charac te r i s t ics  of 0.11-scale  rocket models of the North American YF-100A 
has  been  conducted by the  Langley Pilotless  Aircraft   Research  Division 
at the  request of the U. S. Air Force. 
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The YF-100A i s  a swept-wing jet-propelled  fighter-type  airplane of 
conventional  configuration  with nose i n l e t ,  and is  designed t o   f l y   a t  
supersonic  speeds. The primary  purpose of the  test   reported  herein was 
to   obtain  drag and longitudinal  tr im  data  for  the  clean  configuration 
of a low-tail  version of the  airplane.  This model w a s  a modification 
of the model of reference 1, which  had a thicker,  higher  horizontal 
t a i l ,  a th icker   ver t ica l  ta i l ,  a la rger  canopy, and a longer  fuselage. 
In   addi t ion  to   drag and trim data, however, some longi tudina l   s tab i l i ty  
and pitch-damping data were obtained  through  analyses of pitch  disturb- 
ances  created by sustainer motor burnout and by two pulse  rockets. 

SYMBOLS 

free-stream Mach number 

Reynolds number based on  mean aerodynamic chord 

model weight, 139.7 l b  

mean aerodynamic chord 

free-stream dynamic pressure,  lb/sq f t  

model wing area  (leading and t r a i l i n g  edges  extended t o  
fuselage  center  l ine),  4.56 sq f t  

chord-force  coefficient, Chord force 
9s 

drag  coefficient , Drag 
ss 

pressure  drag  coefficient 

r a t e  of change of drag  coefficient  with Mach number 

normal-force  coefficient, Normal force 
9s 

l i f t   c o e f f i c i e n t ,  - L i f t  
9s 

pitching-moment coefficient about the  center of gravity, 
Pitching moment 

qSF 

angle of attack, deg U 



rate  of  change of pitching-moment  coefficient  with  angle  of 

attack, -, per  deg 
da 
dC, 

period  of  the  short-period  longitudinal  oscillation,  sec 

- de  radians/sec 
dt ' 
da radians/sec 
dt ' 
rate of change  of  lift  coefficient  with  angle  of  attack, 

dCL/da ,  per  deg 

velocity,  ft/sec 

flight-path  angle 

, per  radian ag) 
cross-sectional  area or aspect  ratio 

model  length  from  nose  to  fuselage  base 

distance  measured  rearward  from  nose, ft 

radius,  ft 

longitudinal-accelerometer  reading 

normal-accelerometer  reading 

time  required for  the  short-period  longitudinal  oscillation 
to damp  to  one-half  amplitude,  sec 
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MODEL 
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Figure 1 i s  a three-view drawing of the model used i n   t h i s   i n v e s t i -  
gation.  Figure 2 shows cross-sectional  area of the components plotted 
nondimensionally  against  fuselage  station, and f igure 3 shows t o t a l  
cross-sectional  area  for  the model of this t e s t  and the model of refer-  
ence 1 plotted  dimensionally  against  fuselage  station.  Figures 4 t o  6 
are photographs of the  model. Table I includes  geometric  dimensions of 
the model tes ted  and  of the model of reference 1. 

The model had no duct  inlet;   the  fuselage  l ines were f a i r e d   t o  a 
pointed nose  ahead of the  inlet   locat ion.  The fuselage w a s  b u i l t  around 
a 2 -inch-diameter s tee l   tube  which served t o  house the  sustainer  rocket 

motor and t o  secure  the wing, nose, and t a i l .  The fuselage was  of  mahog- 
any with  the  exception of the nose, which was of f iber glass  with  heat- 
res i s tan t   p las t ic  used as a bonding agent. The wing was 7 percent  thick 
and was sol id  aluminum. The horizontal and v e r t i c a l   t a i l s  were 9 per- 
cent  thick and were so l id   s t ee l .  2 

The sustainer motor w a s  a solid-fuel  rocket motor  developing  about 
3,700 pounds of thrust f o r  1 second, and served to   acce le ra te   the  model 
from M = 1.25 t o  M = 1.78. The model was equipped  with two small 
pulse  rockets which were used t o  disturb the model i n   p i t ch  at preset 
times  during  the flight i n  order t o   ob ta in   t he   s t ab i l i t y  data presented 
herein. These pulse  rockets were located on the bottom of the  fuselage 
near  the ta i l .  

Instrumentation  consisted of a four-channel  telemeter which trans- 
mitted  continuous  records of free-stream  total  pressure, normal acceler- 
ation,  longitudinal  acceleration, and horizontal- ta i l  normal acceleration. 

The w i n g  and h o r i z o n t a l   t a i l  were mounted at zero  degrees  incidence 
with  respect  to  the model reference  l ine.  The center of gravity was 
located 20.6 percent  behind  the  leading edge of the mean aerodynamic 
chord. 

TEST PROCEDURE 

The model w a s  boosted t o  M = 1.30 by a solid-fuel Deacon rocket 
motor developing  an  average  thrust of about 6,000 pounds f o r  3 seconds. 
Data transmitted by the  telemeter were recorded by  two independent 
ground receiving  stations. Throughout the   f l igh t ,   the  model was tracked 
by two radar  sets,  one recording  position  in  space and the  other  recording 
radial velocity.  
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A radiosonde was used t o  determine  atmospheric  density,  pressure, 
and temperature  throughout  the  altitude  range  traversed by the model 
f l i g h t .  . 

METHOD OF ANALYSIS 

All data  reported  herein were obtained from the  decelerating  portion 
of the model f l i g h t  where the  model was  separated  from  the  booster and 
the  sustainer  rocket was not  thrusting. Dynamic pressure and Mach  number 
were determined  from  telemetered to ta l   p ressure  and radiosonde s t a t i c  
pre s sure . 

Drag 

Total  drag was determined by two independent methods. The f i r s t  
consisted of d i f fe ren t ia t ion  w i t h  respect  to  t ime of the  veloci ty  (as 
determined  from  radar  tracking, and corrected  for   f l ight-path  angle)  
and calculation of total-drag  coeff ic ient  by the  re la t ionship 

- dv + 32.2 s i n  7 W 
CDtotal - -(E ) 32.2qs 

The second method consisted of calculating  drag  coefficient by the  
relat ionship 

‘Dtotal = cc = -(&) “1 w 

where al/g was determined d i r ec t ly  from telemetered  data and CRotal, 

was  assumed equa l   t o  C, s ince  the model flew near zero l i f t .  

External 

where ‘Dbase 
as the model 

drag was calculated from the  re la t ionship 

‘Dexternal - ‘Dtotal - ‘%ase 
- 

was determined  using  the same base  pressure  coefficient 

of reference 1. 
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L i f t  

L i f t  was determined  from the   re la t ionship  
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where k / g  was determined  directly from telemetered data, and CL was 

assumed equal   to  CN since  the model flew  near  zero l i f t .   S t a t i c   l o n g i -  
tudinal  s t a b i l i t y  and damping i n   p i t c h  were calculated by the methods 
used in   reference 2. 

DISCUSSION OF RESULTS 

Reynolds number varied from 4.6 x 10 6 a t  M = 0.75 t o  14.2 x 10 6 
a t  M = 1.78 as shown in   f i gu re  7. The center of gravi ty  was located 
20.6 percent  behind  the  leading edge of the mean aerodynamic  chord. 
Tbe center of gravi ty  of the model of reference 1 was at  19.6 percent 
mean aerodynamic  chord. 

Longitudinal Trim 

Low-lift  longitudinal trim i s  shown in   f i gu re  8 for this t e s t  and 
fo r   t he  model of reference 1. The longitudinal trim change was smal l  
and consisted of a nosiw-up  tendency  between  subsonic  speeds and 
M = 1.30. It should be noted  that  the model center-of-gravity  location 
was farther  forward  than  for  the  full-scale  airplane (0.20F compared 
t o  about 0.30F). 

Drag 

External  drag, as determined from f igures  9 and 10, i s  presented 
i n   f i g u r e  11 along  with  external drag from reference 1. The subsonic 
external  drag  level i s  about 0.012. The drag  rise,  based on 
dCD/dM = 0.10,  occurs a t  M = 0.93. The peak  drag coeff ic ient  i s  0.039 
and occurs a t  M N 1.10. Between M = 1.10 and M = 1.71, the  external 
drag coefficient  decreases from  0.039 t o  0.034. The referenced  values 
are from a rocket model t e s t  of an ear l ier   vers ion of the same airplane,  
employing  a thicker  t a i l  (7 percent),  a larger  canopy, and a s l igh t ly  
shorter  fuselage. The e f fec ts  of these  differences  in  configuration on 
the  area  dis t r ibut ion can be  seen in  f igure 3 .  Comparison of the two 
curves shown in   f i gu re  1l indicates  that   the  later  version,  reported 
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herein,  has  slightly  higher  subsonic  drag, a less-abrupt  drag  rise, and 
appreciably  less  drag  at  speeds above M = 1.0. The lower  drag a t  
supersonic  speeds i s  f e l t   t o  be the  effect  of the  less   blunt  body 
resul t ing from the  smaller canopy  and the  thinner  horizontal and ve r t i -  
c a l   t a i l s .  

Variation of pressure  drag  with Mach number i s  shown in   f i gu re  12. 
Comparison between the   t e s t   r e su l t s  of reference 1 and values from refer-  
ence 3 ,  which are  from a body-of-revolution model having  the same area 
dis t r ibut ion  as   the model of reference 1, indicates  that   the  transonic 
area  rule does not  accurately  predict  the peak pressure  drag of a con- 
f igurat ion of this   type.   Further ,   resul ts  from the  test   reported  herein 
and the   t e s t  of reference 1, as compared t o  values of peak pressure  drag 
f o r  corresponding  bodies of revolution,  calculated by the method of 
reference 4, l eads   to   the  same conclusion. It i s  interesting  to  note,  
however, tha t   the  increment between the measured drags of the  configura- 
tions  agrees well with  the  calculated  increments between the  corre- 
sponding  bodies of revolution,  at  M = 1.2 .  

Longitudinal  Stability 

The period of the  short-period  pitch  oscil lation i s  shown i n   f i g -  
ure 13. Figure 14 shows the  s ta t ic- longi tudinal-s tabi l i ty  parameter 
as determined from the  values of pitch  period  presented i n  figure 13. 
Figure 14 shows a gentle  decrease  in Cm, from  about -0.034 at M = 1.25 
t o  about -0.020 at M = 1.75. 

cma 

Lift-curve  slope,  as  determined from references 3 and 6 and cor- 
r ec t ed   fo r   t he   f l ex ib i l i t y  of t h i s  model, i s  shown in   f i gu re  13. These 
values were used to   ca l cu la t e   t he   s t ab i l i t y   da t a   i n  this paper.  Fig- 
ure 16 shows aerodynamic-center location from the  present   tes t ,  and 
from reference 1. While the  variation  with Mach number i s  similar f o r  
the model of this t e s t  and the model reported i n  reference 1, the model 
of this t e s t  has i t s  aerodynamic center  located  about 10 percent  farther 
rearward  than  the model of reference 1. This i s  caused a t   l e a s t  par- 
t i a l l y  by the  greater   s t i f fness  of the  horizontal t a i l  of the model of 
t h i s   t e s t ,  and probably i s  somewhat affected by the  ver t ical   locat ion 
of the  horizontal  t a i l  (the horizontal t a i l  of the model of this test  
was located below the w i n g  chord  plane,  while on the model  of reference 1 
the   ho r i zon ta l   t a i l  was above the wing chord plane). 

Damping in   P i t ch  

Time required f o r  the  short   per iod  longi tudinal   osci l la t ion  to  damp 
t o  one-half  amplitude is shown i n   f i g u r e  17. Figure 18 shows values 



8 - NACA RM SL54DO5 

of hS + % as determined  using  the  values of T1/2 shown i n   f i g -  

ure 17. Also shown are values from reference 1, and values  calculated 
by the method  of reference 7, using values of  downwash from reference 8. 
A t  the  higher  supersonic  speeds, damping measured i n  both  the  tes t  
reported  herein and the t e s t  of reference 1 is  higher than the  values 
calculated by the method of reference 7. A t  the lower  supersonic  speeds, 
however, the measured damping appears t o  decrease  appreciably below the 
calculated  values. 

F lu t te r  and Buffet 

As noted in   the   descr ip t ion  of the model, a normal  accelerometer 
was ins ta l led  i n  the t a i l .  This  accelerometer showed  no indication of 
t a i l   b u f f e t   o r  f lu t te r  during any portion of the test   reported  herein.  

CONCLUSIONS 

From t h e   t e s t  of a 0.11-scale  rocket model of a low-tail  version 
of the  North American YF-100A airplane  a t  Mach numbers between 0.75 a d  
1.78 at low l i f t ,  the  following  conclusions are indicated: 

1. The subsonic l e v e l  of the external  drag  coefficient was 0.012, 
the  drag  rise  based on dCD/dM = 0.10 began at M = 0.93, the  drag 
coefficient peaked a t  a value of 0.039 a t  M 1.10 and then  decreased 
t o  a  value of 0.034 at M = 1.71. 

2. The low-lift   longitudinal trim change was mild and consisted of 
a  nosing-up  tendency  between  subsonic  speeds and M = 1.30. It should 
be noted tha t   the  model center of gravity was  approximately 10 percent 
mean aerodynamic chord f a r the r  forward  than that of the  ful l -scale  
airplane. 

3. Damping i n   p i t c h  appeared t o  decrease at the lower  supersonic 
speeds. 



4. There was no indication of t a i l  bu f fe t   o r   f l u t t e r  during 
portion of the  tes t  reported  herein. 

Langley  Aeronautical  Laboratory, 
National Advisory Cormnittee for Aeronautics, 

Langley Field, Va. ,  March 16, 1954. 

-Willard S . Blanchard: Jr . 
Aeronautical  Research  Scientist 

(/ p s e p h  A. Shortal 
Chief P i 1  less Aircraft  Research  Division 
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TABU I.- GEOMETRIC DIMENSIONS 

Wing : 
T o t a l  area,  sq f t  . . . . . . . . . . 
Exposed area, sq f t  . . . . . . . . . 
Aspect r a t io  . . . . . . . . . . . . 
Sweepback (quarter  chord), deg . . . 
Taper r a t io  . . . . . . . . . . . . . 

Horizontal t a i l :  
Total  area,  sq f t  . . . . . . . . . . 
Exposed area, sq f t  . . . . . . . . . 
Aspect r a t io  . . . . . . . . . . . . 
Sweepback (quarter  chord), deg . . . 
Taper r a t io  . . . . . . . . . . . . . 

Vert ica l   t a i l :  
Total  area  (to  center  line), sq f t  . 
Exposed area,  sq f t  . . . . . . . . . 
Aspect r a t io  . . . . . . . . . . . . 
Sweepback (quarter  chord), deg . . . 
Taper r a t io  . . . . . . . . . . . . . 

Fuselage : 
Frontal  area,  sq f t  . . . . . . . . . 
Length, f t  . . . . . . . . .. . . . . 
Base area,  sq f t  . . . . . . . . . . 

Fuselage nose t o  wing leading edge 
(center line), f t  . . . . . . . . . . 

Fuselage nose to   horizontal- ta i l  
leading edge (center  l ine),  f t  . . . 

Wing chord plane t o  fuselage 
reference line, f t  . . . . . . . . . 

Tail chord plane t o  fuselage 
reference  line, f t  . . . . . . . . . 

Wing airfoi l   sect ion,   f ree  stream . . . 
Korizontal- and ver t ica l - ta i l  

a i r foi l   sect ions,   f ree  stream . . . . 
*Includes faired nose (no i n l e t ) .  

Model of re f .  1 
(High t a i l )  

4.56 
3.54 
3.56 

45 
0.30 

1.20 
0.85 
3.56 

45 
0.30 

0.60 

1.76 
45 

0.28 

0.46 

0.32 
*5 -25 
0.054 

*l .725 

*4.135 

0 .lo4 

0.058 

f 
11 

Present  test 
(LOW t a i l )  

4.56 
3.54 
3.56 

45 
0.30 

1.20 
0.85 
3.56 

45 
0.30 

0.69 
0.54 
1.45 

0.41 
45 

0.32 
*5 47 
0.084 

*l . go 

*4.14 

0.104 

0.161 

NACA 64A007 

NACA 64A007 NACA 64A003.5 
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Figure 1.- Three-view  drawing'of  the  model  tested. A l l  dimensions m e  
in inches  unless  otherwise  noted. 
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Model 

0 .1 .2 .3 .4 .6 .7 .8 .9 1.0 1.1 
* 5  X / Z  

(a) Equivalent  body of revolution  (complete  model). 

0 .1 .2 . 3  .4 - 5  X / Z  - 6  .7 .8 .9 1.0 1.1 

(b) Breakdown of areas of the  components. 

Figure 2.- Nondimensional  area  distribution  of  the  model  tested. 



0 10 20 30 40 50 60 70 
x, in. 

Figure 3.- Dimensional  area  distribution. 



L-80907 I. 
Figure 4.- Three-quarter front view of the  model  tested. 



Figure 5.- Side  view of the  model  tested. 
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L-81058.1 
Figure 6.- The  model-booster  combination  in  launching  position. 
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Figure 7.- Variat ion of Reynolds number with Mach number. 
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Figure 8.- Longitudinal t r i m .  
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Figure 9.- T o t a l  drag and chord force. 



Figure 10.- Base  drag  (ref. 1) . 
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Figure 11.- External  drag. 



Calculated  pressure  drag,config. of r e f . l  

Calculated  pressure  drag,config. of t h i s  
(Method of  ref. 4) 

"Increment between calculated  values 
(Method of ref. 4) 



bD 
P) I d 

0 

rn 
Q) 

a * 

Figure 13.- Period  of  the  pitch 
booster 

oscillation.  Tailed  symbols  indicate  data  obtained 
motor  burnout  and  sustainer  firing. 
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Figure 14.- Static-longitudinal-stability 
between  booster  motor 

parameter.  Tailed  symbols  indicate  data  obtained 
burnout  and  sustainer  firing. 
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Figure 15.- Calculated  lift-curve  slope,  including  corrections  for  flexibility of the  model  tested. 
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Figure 16.- Aerodynamic-center  location.  Tailed  symbols  indicate  data  obtained  between  booster 
motor bwnout and  sustainer  firing. 
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Figure 17.- Time  required  for  the  short-period  longitudinal  oscillation  to  damp  to  one-half 
amplitude.  Tailed  symbols  indicate  data  obtained  between  booster  motor  burnout  and  sustainer 
firing. 
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Figure 18.- Damping  in  pitch. 
! 


